Synthesis and Consecutive Double Diels-Alder Cycloadditions of 3-Methylene-5-phenylsulfinyl-1-pentene as a Synthetic Equivalent of Parent Cross-conjugated Triene, 3-Methylene-1,4-pentadiene

Eiji WADA, Noritaka NAGASAKI, Shuji KANEMASA, and Otohiko TSUGE*
Research Institute of Industrial Science, and Department
of Molecular Science and Technology, Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University,
Kasugakoen, Kasuga 816

3-Methylene-5-phenylsulfinyl-1-pentene undergoes stepwise double Diels-Alder cycloadditions with two different dienophiles to afford hydronaphthalene skeletons. This sequence corresponds to cross type of diene-transmissive Diels-Alder cycloaddition of parent 3-methylene-1,4-pentadiene.

Since the first demonstration of diene-transmissive Diels-Alder reaction of 3-benzylidene-2,4-bis(trimethylsilyloxy)-1,4-pentadiene, 1) a variety of cross-conjugated trienes and triene equivalents have been dedicated to this reaction system. 2) Although parent cross-conjugated triene, 3-methylene-1,4-pentadiene, has been long known, the Diels-Alder reaction of this ready-to-polymerize molecule is too intractable to be utilized in organic synthesis. 3) There is so far no example known for the cross type of diene-transmissive Diels-Alder reaction of the parent triene or its synthetic equivalent. 4)

The present communication describes the efficient synthesis of 3-methylene-5-phenylsulfinyl-1-pentene (1) as a synthetic equivalent of parent 3-methylene-1,4-pentadiene and its consecutive Diels-Alder cycloadditions with two different dienophiles. This is the first example of reaction equivalents for the cross type of diene-transmissive Diels-Alder reaction of 3-methylene-1,4-pentadiene.

Although the triene equivalent $\underline{1}$ could be prepared by the Michael addition of 2-lithio-1,3-butadiene $(\underline{3})^5$) to phenylsulfinylethene $(\underline{4})$, a comparable amount of 3-methylene-5,7-bis(phenylsulfinyl)-1-heptene $(\underline{2})$ was always accompanied under all the examined conditions. Consequently, the yield of $\underline{1}$ never exceeded 38% even under the optimized conditions. 6,7) The inevitable formation of $\underline{2}$ has resulted

Scheme 1.

from the competitive Michael addition of 5-lithio-3-methylene-5-phenylsulfinyl-1-pentene (\underline{A}) as the initial adduct with $\underline{4}$.

In the hope of the inhibition of this undesired reaction, 1-phenylsulfinyl-1-trimethylsilylethene ($\underline{5}$) was employed instead of $\underline{4}$. The expected 1:1 adduct, 5-lithio-3-methylene-5-phenylsulfinyl-5-trimethylsilyl-1-pentene (\underline{B}), bears a sterically hindered nucleophilic center so that the further Michael addition of \underline{B} may become extremely unfavorable. In this case, however, it is necessary to solve a newly arising problem that the hydrolyzed 1:1 adduct $\underline{6}$ might undergo sila-Pummeler rearrangement losing the phenylsulfinyl moiety. Fortunately, smooth desilylation of $\underline{6}$ took place on its treatment with a fluoride anion in aqueous medium. Thus, the reaction of $\underline{3}$ with an equimolar amount of $\underline{5}$ was carried out in dry THF at -78 °C for 40 min and then quenched with a solution of tetrabutylammonium fluoride (TBAF) in aqueous THF at the same temperature. This procedure gave 73% yield of $\underline{1}$ after chromatographic purification on silica gel.

With the desired triene equivalent $\underline{1}$ in hand, its double Diels-Alder reaction sequence was next examined as shown in Scheme 1: The initial Diels-Alder reaction

Scheme 2.

Chemistry Letters, 1986

with a dienophile (A=B) produces monocycloadduct $\underline{7}$. Thermal elimination of benzenesulfinic acid from $\underline{7}$ reveals a diene moiety $\underline{8}$ whose second Diels-Alder reaction with another dienophile (C=D) gives cross biscycloadduct $\underline{9}$.

As it was found later that benzenesulfinic acid was slowly eliminated when the monocycloadduct $\underline{7}$ was heated under reflux in benzene, the initial Diels-Alder reaction has to be conducted around 50-60 °C or below. But, the Diels-Alder reaction of $\underline{1}$ under these conditions was impractically slow. Use of a certain Lewis acid is necessary, while there is no example known for the Lewis acid-catalyzed Diels-Alder reactions of the dienes or dienophiles carrying a sulfinyl substituent. 9)

Among the catalysts tested, ethylaluminum dichloride and stannyl chloride were found to accelerate the cycloaddition to a significant extent. Thus, the reaction of $\underline{1}$ with a variety of dienophiles proceeded smoothly under mild conditions in the presence of the Lewis acid catalysts to give cycloadducts $\underline{7a-7f}$ (Table 1 and Scheme 2). However, the regionselectivity in the reactions with unsymmetrical olefins was not so high as expected (para:meta=94:6 to 80:20). $\underline{10}$)

Table 1.	Double	Diels-Alder	Cycloaddition	of 1

Diene	e Dienophile	Catalyst ^a	Solvent ^b)	Temp/°C	Time/h	Product	Yield/% ^{c)}		
<u>1</u>	DMAD	-	BZ	50	54	<u>7a</u>	75		
		AL (2.0)	DCM	rt	24		52 ^d)		
1	dimethyl maleate	AL (2.0)	DCM	rt	7	<u>7b</u>	7 5		
1	N-phenylmaleimide	AL (2.0)	DCM	rt	3	<u>7c</u>	83		
1	3-buten-2-one ^{e)}	SN (2.0)	DCM	rt	2	<u>7d</u>	93 ^{f)}		
		SN (3.0)	DCM	-78	5		85 ^g)		
		SN (5.0)	DCM	-78	15 mi	n	55 ^{h)}		
1	methyl acrylate ^e)	AL (2.0)	DCM	rt	24	<u>7e</u>	69 ⁱ⁾		
<u>1</u>	acrolein ^{e)}	SN (2.0)	DCM	rt	1	<u>7f</u>	86 ^{j)}		
Precursor Diene generation $^{\mathrm{b}}$) Cycloaddition with DMAD $^{\mathrm{b}}$) Products (yield/%) $^{\mathrm{k}}$)									
<u>7a</u>	reflux in T,	22 h	one-pot	;	- '	<u>10</u>	<u>a</u> (68) ¹⁾		
<u>7b</u>	reflux in T,	24 h r	eflux in T	25 h	<u>9b</u> (81) <u>10</u>	<u>0b</u> (80)		
<u>7c</u>	reflux in T,	22 h	one-pot	;	<u>9c</u> (82) <u>10</u>	<u>)c</u> (100)		
<u>7d</u>	reflux in T,	24 h r	eflux in BZ	Z, 72 h	<u>9d</u> (84) <u>10</u>	<u>)d</u> (73)		
<u>7e</u>	reflux in T,	23 h r	eflux in T,	28 h	<u>9e</u> (59) <u>10</u>	<u>)e</u> (81)		
<u>7f</u>	reflux in T,	24 h r	eflux in T,	24 h	<u>9f</u> (24) -	•		

a) AL: ethylaluminum dichloride; SN: stannyl chloride. b) BZ: benzene; DCM: dichloromethane; T: toluene. c) Isolated yield. d) 28% of $\underline{1}$ was recovered. e) The meta:para ratios in the reactions without catalyst: $\underline{7d}$ (50 °C, 7 d, 96%, 70:30); $\underline{7e}$ (50 °C, 14 d, 85%, 69:31); $\underline{7f}$ (50 °C, 54 h, 75%, 70:30). f-j) The meta:para ratios are as follows: f: 87:13; g: 91:9; h: 94:6; i: 80:20; j: 92:8. k) The yields of $\underline{9}$ and $\underline{10}$ are based on $\underline{7}$ and $\underline{9}$, respectively. Aromatization was carried out by heating $\underline{9}$ with chloranil in toluene for 1 to 3 d. 1) Based on 7a. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was used.

The cycloadducts $\underline{7}$ eliminated benzenesulfinic acid when heated under reflux in toluene, and the dienes $\underline{8a-8f}$ generated were trapped by dimethyl acetylenedicarboxylate (DMAD) to give cross biscycloadducts $\underline{9a-9f}$ (Scheme 2 and Table 1). As the sulfinic acid readily adds to DMAD and the resulting adduct is hardly separable from $\underline{9}$, we first removed the sulfinic acid by filteration of the reaction mixture through a column packed with silica gel and then the crude dienes $\underline{8a-8f}$ were subjected to the second cycloaddition. These cross biscycloadducts $\underline{9}$ were dehydrogenated with chloranil or DDQ to give naphthalene $\underline{10a}$, or tetrahydronaphthalene derivatives $\underline{10b-10f}$ in good yields.

The second Diels-Alder reaction can be carried out as well with an olefinic dienophile. For example, the stereoselective cross biscycloadduct $\underline{11}$ was obtained in the one-pot reaction of $\underline{7a}$ with N-phenylmaleimide in $\underline{76\%}$ yield.

References

- 1) O. Tsuge, E. Wada, and S. Kanemasa, Chem. Lett., 1983, 239.
- a) O. Tsuge, E. Wada, S. Kanemasa, and H. Sakoh, Bull. Chem. Soc. Jpn., <u>57</u>, 3221 (1984);
 b) O. Tsuge, S. Kanemasa, H. Sakoh, and E. Wada, ibid., <u>57</u>, 3234 (1984);
 c) O. Tsuge, E. Wada, and S. Kanemasa, Chem. Lett., <u>1984</u>, 469 and 709;
 d) S. Kanemasa, H. Sakoh, E. Wada, and O. Tsuge, Bull. Chem. Soc. Jpn., <u>58</u>, 3312;
 e) S. Kanemasa, H. Sakoh, E. Wada, and O. Tsuge, ibid., <u>59</u>, 1869 (1986).
- 3) A. T. Blomquist and J. A. Verdol, J. Am. Chem. Soc., <u>77</u>, 81 (1955); W. J. Bailey and J. Economy, ibid., <u>77</u>, 1133 (1955); W. J. Bailey, C. H. Cunov, and L. Nicholas, ibid., <u>77</u>, 2787 (1955).
- 4) It was orally presented that 3-methylene-5-phenylthio-1-pentene could be serve as a synthetic equivalent of 3-methylene-1,4-pentadiene (H. Sano, Y. Ueno, and M. Okawara, The 45th Annual Meeting of Chemical Society of Japan (Tokyo), Preprint II, p. 973 (1982)).
- 5) 2-Lithio-1,3-butadiene $\underline{3}$ is readily available from 2-chloro-1,3-butadiene by its conversion to 2-tributylstannyl-1,3-butadiene and the subsequent transmetallation (E. Wada, S. Kanemasa, I. Fujiwara, and O. Tsuge, Bull. Chem. Soc. Jpn., 58, 1942 (1985)).
- 6) The yield was based on $\underline{4}$ which was used in half an equimolar amount of $\underline{3}$.
- 7) A diluted solution of the Michael acceptor $\underline{4}$ in THF (60 ml per 3 mmol of $\underline{4}$) was slowly added, in a period of 6 h at -78 °C, to the Michael donor $\underline{3}$ (two equiv. in THF). The mixture was allowed to react for 1 h at this temperature. Usual hydrolytic work-up gave $\underline{1}$ (38%) and $\underline{2}$ (38%) (yields based on $\underline{4}$).
- 8) The sulfoxide $\underline{6}$ undergoes facile sila-Pummeler rearrangement when kept to stand at room temperature.
- 9) The efficient use of ethylaluminum dichloride in the Diels-Alder reaction of the diene bearing a sulfonyloxy substituent with 3-butene-2-one is known (Ref. 2e).
- 10) As Lewis acid-catalyzed Diels-Alder reactions: T. C. Ehlert and J. L. Margrave, J. Am. Chem. Soc., <u>86</u>, 3899 (1964); T. Inukai and T. Kojima, J. Org. Chem., <u>31</u>, 1121, 2032 (1966), and ibid., <u>35</u>, 1342 (1970).

(Received June 25, 1986)